Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study.

نویسندگان

  • Lisamarie Windham-Myers
  • Jacob A Fleck
  • Joshua T Ackerman
  • Mark Marvin-DiPasquale
  • Craig A Stricker
  • Wesley A Heim
  • Philip A M Bachand
  • Collin A Eagles-Smith
  • Gary Gill
  • Mark Stephenson
  • Charles N Alpers
چکیده

With seasonal wetting and drying, and high biological productivity, agricultural wetlands (rice paddies) may enhance the conversion of inorganic mercury (Hg(II)) to methylmercury (MeHg), the more toxic, organic form that biomagnifies through food webs. Yet, the net balance of MeHg sources and sinks in seasonal wetland environments is poorly understood because it requires an annual, integrated assessment across biota, sediment, and water components. We examined a suite of wetlands managed for rice crops or wildlife during 2007-2008 in California's Central Valley, in an area affected by Hg contamination from historic mining practices. Hydrologic management of agricultural wetlands for rice, wild rice, or fallowed - drying for field preparation and harvest, and flooding for crop growth and post-harvest rice straw decay - led to pronounced seasonality in sediment and aqueous MeHg concentrations that were up to 95-fold higher than those measured concurrently in adjacent, non-agricultural permanently-flooded and seasonally-flooded wetlands. Flooding promoted microbial MeHg production in surface sediment of all wetlands, but extended water residence time appeared to preferentially enhance MeHg degradation and storage. When incoming MeHg loads were elevated, individual fields often served as a MeHg sink, rather than a source. Slow, horizontal flow of shallow water in the agricultural wetlands led to increased importance of vertical hydrologic fluxes, including evapoconcentration of surface water MeHg and transpiration-driven advection into the root zone, promoting temporary soil storage of MeHg. Although this hydrology limited MeHg export from wetlands, it also increased MeHg exposure to resident fish via greater in situ aqueous MeHg concentrations. Our results suggest that the combined traits of agricultural wetlands - slow-moving shallow water, manipulated flooding and drying, abundant labile plant matter, and management for wildlife - may enhance microbial methylation of Hg(II) and MeHg exposure to local biota, as well as export to downstream habitats during uncontrolled winter-flow events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA.

As part of a larger study of mercury (Hg) biogeochemistry and bioaccumulation in agricultural (rice growing) and non-agricultural wetlands in California's Central Valley, USA, seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment. Three types of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow fields) and two types of manage...

متن کامل

Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region.

It is widely recognized that wetlands, especially those rich in organic matter and receiving appreciable atmospheric mercury (Hg) inputs, are important sites of methylmercury (MeHg) production. Extensive wetlands in the southeastern United States have many ecosystem attributes ideal for promoting high MeHg production rates; however, relatively few mercury cycling studies have been conducted in ...

متن کامل

Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California: spatial and seasonal variations in water quality.

The seasonal and spatial variability of water quality, including mercury species, was evaluated in agricultural and managed, non-agricultural wetlands in the Yolo Bypass Wildlife Area, an area managed for multiple beneficial uses including bird habitat and rice farming. The study was conducted during an 11-month period (June 2007 to April 2008) that included a summer growing season and flooded ...

متن کامل

Mercury bioaccumulation in a stream network.

Mercury (Hg) contamination is common in stream and river ecosystems, but factors mediating Hg cycling in the flowing waters are much less understood than inthe lakes and wetlands. In this study, we examined the spatial patterns of methylmercury (MeHg) concentrations in the dominant groups of aquatic insect larvae across a network of streams (drainage area ranging from 0.5 to 150 km2) in norther...

متن کامل

Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone.

The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Science of the total environment

دوره 484  شماره 

صفحات  -

تاریخ انتشار 2014